organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(1*R*,4*S*,8*R*,9*S*,12*S*,13*S*,14*R*,16*S*,19*R*)-19-Acetoxy-14-hydroxy-7,7-dimethyl-17methylene-2,18-dioxo-3,10-dioxapentacyclo[14.2.1.0^{1,13}.0^{4,12}.0^{8,12}]nonadec-9yl acetate

Hao Shi

The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China Correspondence e-mail: shihao@126.com

Received 11 November 2007; accepted 15 November 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.044; wR factor = 0.064; data-to-parameter ratio = 7.6.

The title compound, $C_{24}H_{30}O_9$, was prepared from the natural diterpenoid macrocalyxin J and is built from five fused rings. Cyclohexane ring A adopts a chair conformation, ring B exists in a screw-boat conformation and ring C adopts a boat conformation. The five-membered ring D adopts an envelope conformation, while ring E adopts a twist conformation. The crystal structure displays intermolecular $O-H\cdots O$ hydrogen bonds, which link molecules to form a chain parallel to the *a* axis. The absolute configuration was deduced from the chirality of macrocalyxin A, which was isolated from the same plant (*i.e. Rabdosia macrocalyx*) as macrocalyxin J. One of the carbonyl O atoms is disordered over two sites, with refined site occupancies of 0.794 (12):0.206 (12).

Related literature

For related literature, see: Cremer & Pople (1975); Shi et al. (2003, 2007).

Experimental

Crystal data

 $C_{24}H_{30}O_9$ $V = 2274.9 (4) Å^3$ $M_r = 462.48$ Z = 4Orthorhombic, $P2_12_12_1$ Mo K α radiationa = 7.5188 (6) Å $\mu = 0.10 \text{ mm}^{-1}$ b = 9.7993 (13) ÅT = 298 (2) Kc = 30.876 (3) Å $0.40 \times 0.18 \times 0.17 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	10274 measured reflections
diffractometer	2324 independent reflections
Absorption correction: multi-scan	1579 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 1999)	$R_{\rm int} = 0.058$
$T_{\min} = 0.960, \ T_{\max} = 0.983$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	304 parameters
$wR(F^2) = 0.064$	H-atom parameters constrained
S = 1.16	$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$
2324 reflections	$\Delta \rho_{\rm min} = -0.14 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2\cdots O4^i$	0.82	2.37	2.873 (3)	120
Summatry and a (i)	v 1 u a			

Symmetry code: (i) x - 1, y, z.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

This project was supported by the Natural Science Foundation of Zhejiang Province, China (grant No. Y205318).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2072).

References

Bruker (1999). SMART (Version 5.611), SAINT (Version 6.02a) and SADABS (Version 2.08). Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Shi, H., Guo, Y. W., Yu, J. L. & Sun, J. (2003). Z. Kristallogr. New Cryst. Struct. 218, 328–330.

Shi, H., He, S., He, L. & Pan, Y. J. (2007). Chem. J. Chin. Univ. 28, 100–102. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.

Acta Cryst. (2007). E63, o4800 [doi:10.1107/S1600536807059302]

(1*R*,4*S*,8*R*,9*S*,12*S*,13*S*,14*R*,16*S*,19*R*)-19-Acetoxy-14-hydroxy-7,7-dimethyl-17-methylene-2,18-dioxo-3,10-dioxapentacyclo[14.2.1.0^{1,13}.0^{4,12}.0^{8,12}]nonadec-9-yl acetate

H. Shi

Comment

Since the natural diterpenoid Macrocalyxin J exhibits cytotoxicity *in vitro* against cultures of Hela cells (Shi *et al.*, 2007), I have derived the title compound from it.

The molecule is built up from five fused rings, three six membered and two five membered rings. Some geometrical features of these rings were investigated using *PLATON* (Spek, 2003).

Cyclohexane ring A (C4—C8/C12) adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) Q = 0.542 (4) Å, and θ = 161.5 (3) and φ = 285.9 (12) °, ring B (O3/C2/C1/C13/C12/C4) exists in a screw-boat conformation (Q = 0.631 (3) Å, θ = 112.5 (3) and φ = 90.5 (3) °), ring C (C1/C13—C16/C19) adopt the boat conformation (Q = 0.847 (4) Å, θ = 81.0 (3) and φ = 292.0 (2) °). The two five-membered rings, ring D (C1/C18/C17/C16/C19) adopts an envelope conformation with puckering parameters Q2 = 0.472 (4) Å, and φ 2 = 147.2 (5)° (envelope on C19), the ring E (O10/C9/C8/C12/C11) adopts a twisted conformation with puckering parameters Q2 = 0.368 (3) Å, and φ 2 = 268.6 (5)° (twisted on C8 and C12).

Intermolecular O—H…O hydrogen bond is present and link molecules to form a chain parallel to the *a* axis.

Since the title compound was prepared from Macrocalyxin J, which was isolated from the same plant (*i.e. Rabdosia macrocalyx*) as Macrocalyxin A, the configuration can be deduced from the known chirality of the Macrocalyxin A (Shi *et al.*, 2003), and thus Fig. 1 represents the correct absolute configuration.

Experimental

Macrocalyxin J (50 mg; isolated from Rabdosia macrocalyx) was dissolved in a mixture of pyridine (1.5 ml) and Ac_2O (1.5 ml) and the solution was stirred for 3 h at room temperature. MeOH (5 ml) was then added to the mixture and the solution was concentrated *in vacuo* to give a residue that was purified by column chromatography to give the title compound (I).

Crystals suitable for X-ray structure analysis were obtained by slow evaporation from a solution of methanol at room temperature.

Refinement

H atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.96 Å (CH₃), 0.97 Å (CH₂) and 0.98(CH) and with the temperature factors U_{iso} = 1.5 U_{eq} (CH₃) and 1.2 U_{eq} (CH₂, CH).

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined from the X-ray analyses. The Friedel pairs were merged and any references to the Flack parameter was removed.

Figures

Fig. 1. Perspective view of the title compound, shown with 30% probability displacement ellipsoids.

Fig. 2. Partial packing view of the title compound showing the formation of a chain parallel through O—H···O hydrogen bonding interactions. H atoms not involved in hydrogen bonds have been omitted for clarity. Symmetry codes: (i) x - 1, y,z; (ii) x + 1,y,z.

reflections

Fig. 3. The formation of the title compound.

(1R,4S,8R,9S,12S,13S,14R, 16S,19R)-19-acetoxy-14-hydroxy-7,7-dimethyl-17-methylene- 2,18-dioxo-3,10-dioxapentacyclo[14.2.1.0^{1,13}.0^{4,12}.0^{8,12}]nonadec-9-yl acetate

$C_{24}H_{30}O_9$	$F_{000} = 984$
$M_r = 462.48$	$D_{\rm x} = 1.350 {\rm ~Mg~m^{-3}}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 1637
a = 7.5188 (6) Å	$\theta = 2.5 - 18.6^{\circ}$
<i>b</i> = 9.7993 (13) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 30.876 (3) Å	T = 298 (2) K
$V = 2274.9 (4) \text{ Å}^3$	Needle, colorless
Z = 4	$0.40\times0.18\times0.17~mm$

Data collection

Bruker SMART CCD area-detector diffractometer	2324 independent reflections
Radiation source: fine-focus sealed tube	1579 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.058$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
φ and ω scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1999)	$h = -8 \rightarrow 8$
$T_{\min} = 0.960, \ T_{\max} = 0.983$	$k = -11 \rightarrow 11$

10274 measured reflections $l = -36 \rightarrow 20$

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0113P)^2]$
	where $P = (F_0^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.044$	$(\Delta/\sigma)_{\rm max} = 0.001$
$wR(F^2) = 0.064$	$\Delta \rho_{max} = 0.18 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 1.16	$\Delta \rho_{min} = -0.14 \text{ e } \text{\AA}^{-3}$
2324 reflections	Extinction correction: SHELXL97,
	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
304 parameters	Extinction coefficient: 0.0023 (3)
Determined and the formation of the sector o	

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
01	0.9266 (3)	0.3557 (3)	0.10199 (9)	0.0638 (8)	
02	0.2850 (3)	0.4305 (2)	0.17675 (7)	0.0576 (7)	
H2	0.2533	0.5074	0.1697	0.086*	
O3	0.7029 (3)	0.6822 (2)	0.15932 (7)	0.0493 (6)	
O4	0.9468 (3)	0.5647 (2)	0.16904 (8)	0.0575 (7)	
O5	0.8068 (3)	0.3360 (3)	0.21771 (8)	0.0585 (7)	
O6	0.7301 (5)	0.5132 (4)	0.25961 (10)	0.0999 (12)	
07	0.3183 (3)	0.4234 (2)	0.03846 (7)	0.0540 (7)	
O8	0.2005 (10)	0.4360 (5)	-0.0284 (2)	0.097 (2)	0.794 (12)
O8'	0.109 (4)	0.440 (2)	-0.0064 (7)	0.097 (2)	0.206 (12)
O10	0.5259 (3)	0.5940 (2)	0.03211 (7)	0.0536 (7)	
C1	0.6912 (4)	0.4326 (3)	0.15109 (10)	0.0381 (8)	
C2	0.7893 (5)	0.5633 (4)	0.16052 (10)	0.0440 (9)	
C4	0.5137 (4)	0.6782 (3)	0.14912 (11)	0.0421 (9)	

H4	0.4504	0.6345	0.1731	0.051*
C5	0.4536 (5)	0.8256 (3)	0.14586 (12)	0.0539 (11)
H5A	0.5275	0.8745	0.1253	0.065*
H5B	0.4640	0.8699	0.1738	0.065*
C6	0.2601 (5)	0.8270 (3)	0.13087 (11)	0.0517 (10)
H6A	0.1887	0.7737	0.1508	0.062*
H6B	0.2160	0.9201	0.1313	0.062*
C7	0.2398 (5)	0.7694 (3)	0.08555 (11)	0.0431 (10)
C8	0.3068 (4)	0.6184 (3)	0.08541 (10)	0.0359 (9)
H8	0.2158	0.5598	0.0985	0.043*
C9	0.3465 (5)	0.5686 (4)	0.04003 (10)	0.0439 (9)
H9	0.2714	0.6155	0.0188	0.053*
C11	0.6174 (5)	0.6268 (3)	0.07161 (11)	0.0464 (10)
H11A	0.6495	0.7226	0.0722	0.056*
H11B	0.7248	0.5727	0.0743	0.056*
C12	0.4870 (4)	0.5935 (3)	0.10847 (10)	0.0346 (8)
C13	0.5188 (4)	0.4418 (3)	0.12135 (10)	0.0367 (9)
H13	0.5496	0.3946	0.0944	0.044*
C14	0.3617 (5)	0.3632 (3)	0.14031 (11)	0.0463 (10)
H14	0.2702	0.3557	0.1178	0.056*
C15	0.4184 (5)	0.2188 (3)	0.15317 (12)	0.0558 (11)
H15A	0.4182	0.1616	0.1275	0.067*
H15B	0.3314	0.1819	0.1732	0.067*
C16	0.6038 (5)	0.2121 (4)	0.17436 (12)	0.0521 (10)
H16	0.6077	0.1417	0.1969	0.062*
C17	0.7514 (5)	0.1926 (4)	0.14214 (12)	0.0527 (11)
C18	0.8119 (5)	0.3301 (4)	0.12811 (12)	0.0481 (10)
C19	0.6474 (5)	0.3517 (3)	0.19292 (11)	0.0475 (10)
H19	0.5493	0.3914	0.2096	0.057*
C20	0.8287 (5)	0.0804 (4)	0.12796 (13)	0.0759 (13)
H20A	0.9235	0.0861	0.1087	0.091*
H20B	0.7884	-0.0045	0.1372	0.091*
C21	0.0411 (4)	0.7654 (3)	0.07380 (12)	0.0554 (11)
H21A	-0.0225	0.7145	0.0954	0.083*
H21B	0.0264	0.7225	0.0461	0.083*
H21C	-0.0046	0.8568	0.0726	0.083*
C22	0.3306 (5)	0.8651 (3)	0.05231 (12)	0.0629 (12)
H22A	0.3085	0.8322	0.0235	0.094*
H22B	0.4564	0.8669	0.0576	0.094*
H22C	0.2832	0.9556	0.0552	0.094*
C23	0.8354 (7)	0 4277 (6)	0 24981 (14)	0 0762 (14)
C24	1 0157 (6)	0.4049(5)	0.26971 (12)	0.0957(17)
H24A	1 1059	0.4180	0 2481	0.143*
H24B	1 0227	0 3135	0.2808	0.143*
H24C	1 0334	0.4687	0.2929	0.143*
C25	0 2385 (6)	0 3704 (4)	0.00398 (15)	0.0697 (13)
C26	0.2193 (6)	0 2209 (4)	0.00810(14)	0 0904 (16)
H26A	0.1868	0.1829	-0.0194	0.136*
H26B	0.1286	0.2006	0.0290	0.136*
11200	0.1200	0.2000	0.0270	0.150

H26C	0.3302	0.1822	0.0174	0.1	36*	
Atomic displa	cement parameter	$rs(\AA^2)$				
		1/22	L ³³	<i>U</i> ¹²	<i>U</i> ¹³	1/23
01	0.0483 (18)	0.0726 (19)	0.0705 (18)	0.0063 (15)	0.0176 (15)	0.0007.(16)
02	0.0465(10)	0.0720(15)	0.0616(15)	0.0003(13)	0.0170(13) 0.0072(14)	0.0007(10)
03	0.0370(16)	0.0319(15) 0.0476(15)	0.0633 (16)	-0.0001(11)	-0.0105(13)	-0.0090(13)
04	0.0351 (16)	0.0637 (16)	0.0737(18)	-0.0027(14)	-0.0131(14)	0.0023 (16)
05	0.0531(10) 0.0530(18)	0.0037(19)	0.0478 (16)	0.0041 (16)	-0.0137(14)	0.0023(10) 0.0042(15)
06	0.087 (3)	0.131 (3)	0.082.(2)	0.002.(2)	0.000 (2)	-0.038(2)
07	0.0669(19)	0.0443 (15)	0.0508 (16)	-0.0013(15)	-0.0141(14)	-0.0079(14)
08	0.149 (6)	0.086 (2)	0.055 (4)	0.010 (3)	-0.040(4)	-0.013 (3)
08'	0.149 (6)	0.086 (2)	0.055 (4)	0.010 (3)	-0.040 (4)	-0.013 (3)
O10	0.0485 (17)	0.0719 (18)	0.0404 (15)	-0.0043 (15)	0.0044 (13)	0.0009 (14)
C1	0.029 (2)	0.042 (2)	0.043 (2)	0.0020 (19)	-0.0021 (17)	0.0021 (19)
C2	0.040 (3)	0.053 (2)	0.039 (2)	0.000 (2)	-0.001 (2)	0.003 (2)
C4	0.031 (2)	0.048 (2)	0.047 (2)	-0.0017 (18)	-0.0044 (18)	-0.003 (2)
C5	0.051 (3)	0.046 (2)	0.065 (3)	0.005 (2)	-0.006 (2)	-0.018 (2)
C6	0.044 (3)	0.040 (2)	0.071 (3)	0.0091 (19)	-0.003 (2)	-0.008 (2)
C7	0.033 (2)	0.041 (2)	0.055 (2)	0.0015 (18)	-0.0008 (19)	0.0033 (19)
C8	0.031 (2)	0.033 (2)	0.044 (2)	-0.0046 (17)	-0.0001 (17)	0.0013 (17)
C9	0.035 (2)	0.049 (2)	0.047 (2)	0.003 (2)	-0.0100 (19)	0.002 (2)
C11	0.041 (2)	0.047 (2)	0.052 (2)	-0.0002 (19)	0.0001 (19)	0.006 (2)
C12	0.027 (2)	0.036 (2)	0.041 (2)	0.0007 (16)	0.0007 (17)	-0.0020 (19)
C13	0.029 (2)	0.041 (2)	0.040 (2)	-0.0036 (18)	-0.0019 (16)	0.0002 (19)
C14	0.039 (2)	0.051 (2)	0.050(2)	-0.002 (2)	-0.0031 (19)	0.003 (2)
C15	0.050 (3)	0.047 (2)	0.070 (3)	-0.006 (2)	-0.005 (2)	0.011 (2)
C16	0.048 (3)	0.048 (2)	0.061 (3)	0.002 (2)	-0.006 (2)	0.010 (2)
C17	0.047 (3)	0.049 (2)	0.062 (3)	0.003 (2)	-0.009 (2)	-0.004 (2)
C18	0.038 (3)	0.054 (3)	0.052 (2)	0.005 (2)	-0.008 (2)	0.001 (2)
C19	0.039 (3)	0.055 (2)	0.048 (2)	0.002 (2)	-0.0060 (19)	0.009 (2)
C20	0.061 (3)	0.058 (3)	0.109 (3)	0.004 (3)	-0.004 (3)	-0.008 (3)
C21	0.040 (3)	0.053 (2)	0.074 (3)	0.005 (2)	-0.002 (2)	0.004 (2)
C22	0.056 (3)	0.048 (2)	0.085 (3)	-0.001 (2)	-0.001 (2)	0.015 (2)
C23	0.067 (4)	0.117 (5)	0.044 (3)	-0.011 (4)	0.000 (3)	0.006 (3)
C24	0.073 (4)	0.159 (5)	0.055 (3)	-0.024 (4)	-0.023 (3)	0.007 (3)
C25	0.072 (4)	0.065 (3)	0.072 (3)	0.008 (3)	-0.026 (3)	-0.015 (3)
C26	0.096 (4)	0.067 (3)	0.109 (4)	-0.011 (3)	-0.020 (3)	-0.022 (3)
Geometric par	rameters (Å, °)					
O1—C18		1.207 (4)	С9—Н9	9	0.98	00
O2—C14		1.426 (4)	C11—C	212	1.53	7 (4)
O2—H2		0.8200	C11—H	IIIA	0.97	00
O3—C2		1.334 (4)	C11—H	H11B	0.97	00
O3—C4		1.458 (4)	C12—C	213	1.55	7 (4)
O4—C2		1.213 (4)	C13—C	214	1.52	7 (4)

С13—Н13

1.355 (5)

O5-C23

0.9800

o.z. 610	1 100 (1)		
05	1.430 (4)	C14—C15	1.530 (4)
06	1.192 (5)	C14—H14	0.9800
07—C25	1.328 (4)	C15—C16	1.542 (4)
07	1.439 (4)	C15—H15A	0.9700
O8—C25	1.223 (6)	C15—H15B	0.9700
O8'—C25	1.23 (2)	C16—C17	1.502 (5)
O10—C9	1.394 (3)	C16—C19	1.519 (4)
O10-C11	1.437 (4)	С16—Н16	0.9800
C1—C2	1.507 (4)	C17—C20	1.319 (4)
C1—C18	1.528 (5)	C17—C18	1.487 (5)
C1—C19	1.551 (4)	С19—Н19	0.9800
C1—C13	1.591 (4)	C20—H20A	0.9300
C4—C5	1.516 (4)	C20—H20B	0.9300
C4—C12	1.518 (4)	C21—H21A	0.9600
C4—H4	0.9800	C21—H21B	0.9600
C5—C6	1.527 (5)	C21—H21C	0.9600
С5—Н5А	0.9700	C22—H22A	0.9600
С5—Н5В	0.9700	C22—H22B	0.9600
C6—C7	1.517 (4)	C22—H22C	0.9600
С6—Н6А	0.9700	C23—C24	1.505 (6)
С6—Н6В	0.9700	C24—H24A	0.9600
C7—C21	1.538 (4)	C24—H24B	0.9600
C7—C22	1.549 (4)	C24—H24C	0.9600
C7—C8	1 563 (4)	C25—C26	1 477 (5)
C8—C9	1 513 (4)	С26—Н26А	0.9600
C_{8} C_{12}	1 550 (4)	C26—H26B	0.9600
С8—Н8	0.9800	C26—H26C	0.9600
	100 5		105.7
C14 - 02 - H2	109.5		103.7
$C_2 = 0_3 = C_4$	117.3 (3)	02 - 014 - 015	112.5 (3)
$C_{23} = 05 = C_{19}$	117.0 (3)	02-014-015	109.6 (3)
$C_{25} = 07 = C_{9}$	118.7 (3)	C13	110.5 (3)
C9_010_C11	110.8 (2)	02—C14—H14	108.0
C2—C1—C18	111.0 (3)	С13—С14—Н14	108.0
C2—C1—C19	112.2 (3)	C15—C14—H14	108.0
C18—C1—C19	100.2 (3)	C14—C15—C16	113.7 (3)
C2—C1—C13	117.5 (3)	C14—C15—H15A	108.8
C18—C1—C13	104.7 (3)	C16—C15—H15A	108.8
C19—C1—C13	109.7 (3)	C14—C15—H15B	108.8
O4—C2—O3	118.1 (3)	C16—C15—H15B	108.8
O4—C2—C1	122.0 (4)	H15A—C15—H15B	107.7
O3—C2—C1	119.9 (3)	C17—C16—C19	101.8 (3)
O3—C4—C5	106.3 (3)	C17—C16—C15	113.1 (3)
O3—C4—C12	108.8 (3)	C19—C16—C15	108.5 (3)
C5—C4—C12	115.2 (3)	С17—С16—Н16	111.0
O3—C4—H4	108.8	C19—C16—H16	111.0
С5—С4—Н4	108.8	C15—C16—H16	111.0
C12—C4—H4	108.8	C20-C17-C18	121.6 (4)
C4—C5—C6	108.2 (3)	C20—C17—C16	130.7 (4)
C4—C5—H5A	110.0	C18—C17—C16	107.7 (3)

С6—С5—Н5А	110.0	O1—C18—C17	127.0 (4)
С4—С5—Н5В	110.0	O1—C18—C1	126.7 (3)
С6—С5—Н5В	110.0	C17—C18—C1	106.2 (3)
Н5А—С5—Н5В	108.4	O5—C19—C16	106.6 (3)
C7—C6—C5	111.8 (3)	O5—C19—C1	108.8 (3)
С7—С6—Н6А	109.2	C16—C19—C1	101.1 (3)
С5—С6—Н6А	109.2	O5—C19—H19	113.1
С7—С6—Н6В	109.2	С16—С19—Н19	113.1
С5—С6—Н6В	109.2	С1—С19—Н19	113.1
Н6А—С6—Н6В	107.9	C17—C20—H20A	120.0
C6—C7—C21	109.0 (3)	С17—С20—Н20В	120.0
C6—C7—C22	109.9 (3)	H20A—C20—H20B	120.0
C21—C7—C22	106.7 (3)	C7—C21—H21A	109.5
C6—C7—C8	108.8 (3)	C7—C21—H21B	109.5
C21—C7—C8	106.8 (3)	H21A—C21—H21B	109.5
C22—C7—C8	115.4 (3)	C7—C21—H21C	109.5
C9—C8—C12	101.7 (3)	H21A—C21—H21C	109.5
C9—C8—C7	111.8 (3)	H21B—C21—H21C	109.5
C12—C8—C7	115.4 (3)	C7—C22—H22A	109.5
С9—С8—Н8	109.2	C7—C22—H22B	109.5
С12—С8—Н8	109.2	H22A—C22—H22B	109.5
С7—С8—Н8	109.2	C7—C22—H22C	109.5
O10—C9—O7	108.3 (3)	H22A—C22—H22C	109.5
O10—C9—C8	107.2 (3)	H22B—C22—H22C	109.5
07—C9—C8	108.7 (3)	O6—C23—O5	123.1 (5)
О10—С9—Н9	110.8	O6—C23—C24	126.8 (5)
О7—С9—Н9	110.8	O5—C23—C24	110.1 (5)
С8—С9—Н9	110.8	C23—C24—H24A	109.5
O10-C11-C12	106.0 (3)	C23—C24—H24B	109.5
O10-C11-H11A	110.5	H24A—C24—H24B	109.5
C12—C11—H11A	110.5	C23—C24—H24C	109.5
O10-C11-H11B	110.5	H24A—C24—H24C	109.5
C12—C11—H11B	110.5	H24B—C24—H24C	109.5
H11A—C11—H11B	108.7	O8—C25—O7	123.7 (4)
C4—C12—C11	114.3 (3)	O8'—C25—O7	110.6 (10)
C4—C12—C8	114.2 (3)	O8—C25—C26	124.7 (4)
C11—C12—C8	100.6 (3)	O8'—C25—C26	119.4 (11)
C4—C12—C13	106.9 (3)	O7—C25—C26	111.3 (4)
C11—C12—C13	107.1 (3)	С25—С26—Н26А	109.5
C8—C12—C13	113.7 (3)	С25—С26—Н26В	109.5
C14—C13—C12	117.5 (3)	H26A—C26—H26B	109.5
C14—C13—C1	112.3 (3)	С25—С26—Н26С	109.5
C12—C13—C1	109.1 (3)	H26A—C26—H26C	109.5
C14—C13—H13	105.7	H26B—C26—H26C	109.5
С12—С13—Н13	105.7		
C4—O3—C2—O4	-179.9 (3)	C4—C12—C13—C1	-44.2 (3)
C4—O3—C2—C1	0.6 (4)	C11—C12—C13—C1	78.7 (3)
C18—C1—C2—O4	-33.5 (5)	C8—C12—C13—C1	-171.1 (3)
C19—C1—C2—O4	77.7 (4)	C2-C1-C13-C14	-132.9 (3)
	· · ·		()

D—H···A		<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
Hydrogen-bond geometry (Å, °)					
C8—C12—C13—C14	-41.8 (4)				
C11—C12—C13—C14	-152.0 (3)		C9—O7—C25—C2	6	-179.5 (3)
C4—C12—C13—C14	85.1 (3)		C9—O7—C25—O8	1	-44.3 (15)
C7—C8—C12—C13	160.6 (3)		C9—O7—C25—O8		6.5 (8)
C9—C8—C12—C13	-78.2 (3)		C19—O5—C23—C	24	-174.7 (3)
C7—C8—C12—C11	-85.3 (3)		C19—O5—C23—O	6	4.7 (6)
C9—C8—C12—C11	35.9 (3)		C13—C1—C19—C	16	63.8 (3)
C7—C8—C12—C4	37.6 (4)		C18—C1—C19—C	16	-45.9 (3)
C9—C8—C12—C4	158.8 (3)		C2—C1—C19—C10	6	-163.6 (3)
O10-C11-C12-C13	89.8 (3)		C13—C1—C19—O	5	175.9 (3)
O10-C11-C12-C8	-29.3 (3)		C18—C1—C19—O	5	66.2 (3)
O10-C11-C12-C4	-152.1 (3)		C2—C1—C19—O5		-51.6 (4)
C5—C4—C12—C13	-168.4 (3)		C15—C16—C19—C	C1	-74.8 (3)
O3—C4—C12—C13	72.4 (3)		C17—C16—C19—C	C1	44.7 (3)
C5—C4—C12—C8	-41.8 (4)		C15—C16—C19—C	05	171.5 (3)
O3—C4—C12—C8	-160.9 (3)		C17—C16—C19—C	05	-69.0 (3)
C5—C4—C12—C11	73.3 (4)		С23—О5—С19—С	1	96.1 (4)
O3—C4—C12—C11	-45.8 (4)		С23—О5—С19—С	16	-155.6 (3)
C9—O10—C11—C12	10.7 (4)		C13—C1—C18—C	17	-83.8 (3)
C7—C8—C9—O7	-151.0 (3)		C19—C1—C18—C	17	29.8 (3)
C12—C8—C9—O7	85.3 (3)		C2—C1—C18—C17	7	148.5 (3)
C7—C8—C9—O10	92.2 (3)		C13—C1—C18—O	1	92.5 (4)
C12—C8—C9—O10	-31.5 (3)		C19—C1—C18—O	1	-153.9 (4)
С25—О7—С9—С8	138.8 (3)		C2-C1-C18-O1		-35.2 (5)
C25—O7—C9—O10	-105.0 (4)		C16—C17—C18—C	C1	-2.6 (4)
С11—О10—С9—С8	13.5 (4)		C20—C17—C18—C	C1	179.9 (4)
С11—О10—С9—О7	-103.6 (3)		C16—C17—C18—C	01	-178.9 (4)
C22—C7—C8—C12	78.0 (4)		C20—C17—C18—C	D1	3.6 (6)
C21—C7—C8—C12	-163.7 (3)		C15—C16—C17—C	C18	89.7 (4)
C6—C7—C8—C12	-46.2 (4)		C19—C16—C17—C	C18	-26.5 (3)
C22—C7—C8—C9	-37.6 (4)		C15—C16—C17—C	220	-93.1 (5)
C21—C7—C8—C9	80.8 (4)		C19—C16—C17—C	220	150.7 (4)
C6—C7—C8—C9	-161.7 (3)		C14—C15—C16—C	C19	22.6 (4)
C5—C6—C7—C8	60.3 (4)		C14—C15—C16—C	C17	-89.6 (4)
C5—C6—C7—C22	-67.0 (4)		C13—C14—C15—C	C16	40.1 (4)
C5—C6—C7—C21	176.4 (3)		O2—C14—C15—C	16	-84.4 (4)
C4—C5—C6—C7	-64.5 (4)		C1—C13—C14—C	15	-49.5 (4)
C12—C4—C5—C6	54.0 (4)		C12—C13—C14—C	C15	-177.2 (3)
O3—C4—C5—C6	174.6 (3)		C1—C13—C14—O2	2	73.4 (3)
C2—O3—C4—C12	-50.3 (4)		C12—C13—C14—C	02	-54.3 (4)
C2—O3—C4—C5	-174.9 (3)		C19—C1—C13—C	12	128.9 (3)
C13—C1—C2—O3	25.7 (4)		C18—C1—C13—C	12	-124.4 (3)
C19—C1—C2—O3	-102.8 (3)		C2-C1-C13-C12	2	-0.8 (4)
C18—C1—C2—O3	146.1 (3)		C19—C1—C13—C	14	-3.2 (4)
C13—C1—C2—O4	-153.8 (3)		C18—C1—C13—C	14	103.5 (3)

O2—H2···O4 ⁱ	0.82	2.37	2.873 (3)	120
Symmetry codes: (i) $x-1$, y , z .				

Fig. 1

